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ABSTRACT

PR ¢
we invéi;igates;he biases of the residuals and the maximum likelihood

parameter estimates from standard, normal~theory nonlinear regression

models. Emphasis is placed on determining the influence of individual cases

on the biases and on understanding how the residual biases can affect the

usefulness of standard diagnostic methods. It is shown that the various bias

expressions in the literature are equivalent, that the biases in nonlinear

regression can be studied usefully in the context of linear regression, and

that diagnostic plots using residuals can be misleading because of substantial

residual biases. For a class of partially nqa}inear‘quels, it is shown that

the maximum intrinsic curvature’?;;:;;vzggﬁg;tts 1980)\18 closely related to

the residual expectations. Finally, the model associated with power

transformations of single explanatory variables in linear regression is .

investigated in further detail and several numerical illustrations are

presented. \t‘“”d'”' L
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SIGNIFICANCE AND EXPLANATION

The statistical analysis of a collection of data is usually based on a

specified model, a mathematical formula describing the behavior of the data up
to a few unknown parameters which are to be estimated from the data. Much is
known about the statistical behavior of parameter estimates and other

important statistics that arise from analyses based on models that are linear

functions of the parameters, while relatively little is known when the
underlying model is nonlinear in the parameters.

{ The purpose of this paper is to study the bias of the parameter estimates
and other important statistics that stem from analyses based on nonlinear

models with normal errors.
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BIAS IN NONLINEAR REGRESSION
R.D. Cook, C.L. Tsai* and B.C. weil
1. INTRODUCTION

It is well known that the maximum likelihood estimators of the parameters in standard
nonlinear regression models are generally biased estimators of the true parameter
values. Other quantities that are useful in analyses of nonlinear regression models can
be characterized in the same way. The ordinary residuals, for example, generally have
nonzero expectations and in this sense are also bhiased.

The past studies of the various biases in nonlinear regression are certainly useful,
but they do not fully exploit recognizable asgpects of the structure of the problem in a
way that might facilitate understanding; nor do they emphasize points of view that provide
for an appreciation of the potential importance of the biases In practice. The effects of
residual biases on standard diagnostic plots, for example, are apparently unknown. In
this paper we describe a relatively simple structure for investigating the nature of the
parameter and residual biases in nonlinear regression.

In Section 2, we briefly review the past results on the parameter bias, discuss their
interpretation and use in practice, and gshow that individual cases can have a substantial
influence on the bias. In Section 3 we investigate the expectation of the residual vector
and related quantities such as the change in the residual expectations that result from
case deletion. 1In particular, we show that bias in nonlinear regression can be usefully
studied in the context of linear regression.

The transition from linear to fully nonlinear models often seems quite abrupt. This
transition can be smoothed by investigating intermediate, partially nonlinear models. 1In
Section 4, we study a special class of partially nonlinear models that occurs frequently
in practice and covers many of the illustrative examples in the statistical literature.
For this class of models, interesting relationships occur between the residuals and other
diagnostic statistics. The expectations of the residuals, for example, are shown to be
closely related to the Rates-Watts measure of intrinsic curvature. In the remainder of

this section, we establish notation and briefly review relevant background material.
*Department of Statigtics and Operations Research, New York University, New York, NY 10006.
+Departnent of Mathematics, Nanjing Institute of Technology, Nanjing, Jiangsu, The People's

Republic of China,
Sponsored in part by the United States Army under Contract Mo. DAAG29-80-C-0041.
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The standard nonlinear regression model can be represented as
Y; = £, £+, 1= 1,2,000,n (1)
where By represents a vector of known explanatory variables associated with the i-th
observable response Yy 8 is a p-vector of unknown parameters, the response function
f 1is assumed to be known, continuous and twice differentiable in §, and the errors are
assumed to he independent, identically distributed normal random variables with mean 0

and variance 02. For this model, the maximum likelihood estimator 8 of & can be

fow.d by minimizing the objective function

n
. 2
3@ = ) (v, - £x, 2% (2)
Kennedy and Gentle (1980) discuss computational methods for obtaining 97 for our
purposes we agsume that 8 ig available. The asymptotic behavior of § is investigated
by Wu (1981) who provides additional references. The ugual estimator of

02 is 32 - J(é)/(n - p) .

For notational convenience, let fi = f(gi, 8, 1i=12,,..,n, and let Y denote

the n x p matrix with elements fi = afi/aer , 1=1,2,.00,n, *=1,2,.0.,p + Unless

indicated otherwise, all derivatives are evaluated at the true parameter values. Various

quadratic expansions used in the following sections involve the p x p matrices

) {=12,...,n7 the elements of Ei are fis = azfi/aeraes, .8, = 1,2,440,pe
2. BIAS OF §_ .

Numerous approximations for the bias vector E§ - 0 are available in the

literature. Cox and Snell (1968) derive an order n™? approximation for the bias in an

expanded class of models that includes (1) as a special case. Their derivation is based

on a quadratic expansion of the likelihood equations and thus requires third partial

derivatives of the log likelihood. Box (1971) used a gquadratic expansion of the residuals

to obtain an approximation for the bias in a multivariate version of (1). For the single
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respongse case, Bates and Watts (1980) provide a connection between Box's bias
approximation and their parameter-effects curvature array. More recently, further
approximations for the bias have been offered by Clarke (1980), Hougaard (1981) and Amari
(1982). Clarke and Hougaard deal specifically with model (1) while Amari considers curved
exponential families that include (1) as a special case. Clarke's derivation of the bias
approximation is similar in spirit to that of Cox and Snell (1968), while Hougaard's
result is apparently a straightforward application of Skovgaard (1981).

The derivations of the various bias approximations are based on different notations,
approaches and degrees of generality. Clarke (1980) mentions that his result agrees with
that of Box (1971), but otherwise the relationships between these approximations are
apparently unknown. As shown in the Appendix, these bias approximations are, in fact,
identical for model (1). Further, it is shown that, apart from differences in notation,
the Bates-Watts (1980) form for the bias is the same as that given by Clarke (1980).

A useful numerical study of the bias in various yield-density models is given by
Gillis and Ratkowsky (1978; see also Ratkowsky, 1983) who conclude that the actual bias
(as obtained through simulation) is accurately reflected by the now common bias
approximation.

Since the tias forms discussed ahove are all equivalent, any of them can be used as
an aid in nonlinear regression analyses. For the purposes of interpretation, however, it
is helpful to exploit the relationship with linear regression: From the Appendix it
follows that the bias approximation b = Ea = 8 can be expressed as

P A ] (3)

2 T =1
where 4 is an n-vector with elements - o trl(Y'V) 'W.1/2, i = 1,2,...,n. Thus, the

bias b is simply the coefficients from the ordinary least squares regression of g on
the columns of Y . Further, g is essentially the expected difference between linear
and quadratic approximations of the estimated response function. To see this, let £(9)

N
denote the n-vector with elements f , i = 1,2,...,n, and expand £(8) about § ,

1'

£08) = £08) + 38 - ) + 3 (8 - )

Wi - 8) (4

-3-
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where ¥ is an n X p X p array with i-th face Ei' i =12,...,n. Multiplication ,

involving three dimensional arrays is defined as in Bates and Watts (1980) so that the

third term of (4) is an n-vector with elements (8 - Q)Tgi (8 -98)2, 1=1,2,...,n. .

The expected difference between the linear and quadratic approximations of £(8) is thus

-3E@-0WE -0~ g (s :
These results indicate that the bias will be small if the elements of @ are
4 is

sufficiently close to zero, so that the model is essentially linear, or if 4

orthogonal to the tangent plane, i.e. the column space of ¥ .
Because b can be simply interpreted as the coefficient vector from an ordinary

least squares regression, we can now employ a variety of the diagnostic methods available

in linear regreasion to a study of the bias ) in nonlinear regression. 1In particular,

-

added variadle plots [Cook and Weisberg, 1982) for the components of b , or b obtained

by substituting estimates for parameters, may prove to be particularly useful. Further,

the form of L allows for the rather straightforward development of methods for

investigating the effects of individual cases on the determination of b or b.

To investigate the influence of individual cases on b , some additional notation is

required. The subscript (i) means "with the i-th case deleted” so that, for example,

is the (n-1) X p matrix formed by deleting the i-th row of ¥V and

o T -1,T
Ry T Wy Ly S (6)

Y1)

To display the effects of deleting the i-th case, we express R(i) as a function of the

full data, as is usual in this kind of investigation. The general methods for doing this
are the same as those used in linear regression, but an added complication arises here

since all the elements of g change when a case is deleted.

Define the n-vector

v
1 (7

-l
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vwhere x: is the i-th row of ¥ and hy; is the i-th diagonal element of the tangent
-1
plane hat matrix E_ = g(g?~) !T « Further, let Q} and 21 denote (n - 1) x 1 vectors

formed by deleting the i-th components from gi and 4 , respectively. Then

2(1) - g} + 2} and it follows that
'y,
Ry "R TRy T {8)

where h6 is the coefficient vector from the ordinary least squares regression of
gi on ¥, and a, is the i~-th residual from the regression of 4 + £1 onyY .

Equation (£} has several general features in common with well known, analogous
expressions from linear regression. For example, the tangent plane leverage components
h1 can be interpreted in much the same way as the leverage components from linear
regression so that remote points on the tangent plane can have a substantial influence on
the bias. The vector £1 reflects the change in the expected difference between linear
and quadratic approximations of g(é) when the i-th case is deleted. If h; is large

then individual components of ii may be large and removal of the i-th case may result in

a substantial change in the agreement between the linear and quadratic approximations.

3. RESIPUAL PIAS

Althouagh the errors in model (1) have expectation zero, the expectations of the
residuals e, /e fix, , é) ., 1 =1,2,...,n, are generally nonzero and in this sense
the residuals are biased.

Taking the expectation on both sides of (4), using } to approximate E(é) -8, and
using !(é - 2)(§ - g)T = 02(!?!)-1 yields the following approximation E for the
expectation of the residual vector e = (el),

E= (I~ gv)g . (9)

This approximation agrees with the results of Cox and Snell (1968).

5=




A useful pattern appears from (3) and (9): From (3) the parameter bias )} is simply
the coefficient vector from the ordinary least squares regression of § on ¥ , while from
(9) we see that E(g) is just the vector of residuals from this same regression. Other
useful analogies with linear regression can be developed as well: Suppose that f(x, é)
is to be used as an estimate of f = f(x, 8} at a point x that does not occur in the
data. Let - afx/ag and !* = 32fx/322 . Then f£(x, 8) - Efly, é) = dx - x:h where

a = - oztr[(!T!)-1£x]/2 is the "response™ at x and x:g is the "estimate” at x
from the regression of d on Y . In such problems, it may be useful to plot gx - 3:3
as a function of x to find if there are regions of substantial bias.

Bates and Watts (1980) express b in terms of the diagonal elements of the faces of
the parameter-effects curvature array ér . Similarily, E can be expressed in terms of
an orthonormal basis for the null space of ¥V and the diagonal elements the intrinsic
curvature array, Ay . Let Y = QR denote the QR decomposition of §{ and partition

Q = (U, N) where the columns of the n x (n - p) matrix N form an orthonormal basis

for the null space of ¥ . Then

E*~-2n | 2 (10)

where Ari is an (n - p) x 1 vector with elements ‘jii' j=1,2...,n~p, and ‘jii
is the i-th diagonal element of the j-th face of the intrinsic curvature array }J . (In
forming (10) we have used the original rather than scaled data as in Bates and Watts,
1980). Since E depends only on N and the elements of the intrinsic curvature array,
it is invariant under transformations of the parameters, as expected.

The influence of the i-th case on the determination of E can be found by using the
results on 2(1) from Section 2. Let e5(1) denote the j-th residual based on the data
without the i-th case, j = 1,2,...,n, and let dj and 61) denote the j-th elements of

4 and gi , respectively. Then !(ej(l)) = dj + Gij - !:2(1) and using (8) it follows

that the change in the residual expectation is

-6-




E(ej(i) - ej

where hU is the ij-th element of H . When i = j equation (11) gives the change in

= - T -~ -
) 513 Xgkg = hyy @701 - hy) (1)

-

bias of f(x,, 8) when the i-th case is deleted,

T
§ -
Eley gy = &) = - ‘;’:126 “TTwh
i i
Clearly, remote points on the tangent plane can have a substantial influence on the

E(ei) . (12)

average behavior of the residuals. Notice also that 511 - 2126 is simply the i-th

residual from the regression of §, on ¥ .

4. SPECIAL MODELS
4.1 Partially Nonlinear Models.
Further insight into the hehavior of the bias can be gained by considering the
partially nonlinear response function
£(Q) = za + RglY) (13)
where 2 4is a known, full rank n x (p - 2) matrix, 2? - (gT:B,Y) and, as indicatedq,

8 and Y are scalars. This claas of response functions occurs often in practice and in
the statistical literature; see, for example, Bates and Watts (1980) Gallant (1975),
vélund {1978) and Stone (1980). 1In particular, (13) allows for transformation of a single
explanatory variable in linear regression. let g, g' and g* denote n-vectors with

2
elements g, agi/ay and 3291/3Y , respectively. BApplication of the results of

Section 2 yields

¥ = [z, g(v), 8g'(Y)) (14)
4= = cov(B, Y)g'(Y) - § Buar(Y)g"(v) (15)
and
-1 s 2 1 3 Touyv=1yT w
b=-8 ‘coviB, V) £p- 7 Bvar(YMY'V) ¥V gr(y) (16)

where Lp is the p~th standard basis vector, and var{(Y) and cov(B,Y) are the indicated
1

2 -
large sample variance and covariance, i.e. the appropriate elements of ¢ (XTZ)
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Notice that (!?g)-1ng" is simply the coefficient vector from the regression of

g" on Y and that cov(B,Y) contributes only to the bias of Y .
The behavior of b as a function of Y is complicated and difficult to predict.

For the remaining parameters, however, several useful conclusions can be obtained from

(16). VFirst, h does not depend on O, as expected. Second, as a function of
g8 are

8 and 02 + the bias of each of the components of 3 and the bias of

proportional to 62/8 since var(y) is proporticnal to 02/52 +« Third, as a function

~ 2 - A
of B8 and 02 + the bias of Y 18 proportional to O© /32 since cov{B,Y) is

proportional to 02/8 « Clearly, values of B close to zero can result in substantially

biased estimators while for sufficiently large values of B the bias will be

negligible. This reinforces the usual empirical notion that a transformation Y an

explanatory variable in linear regression will be well determined only when the r: ession
coefficient 8 1is large relative to J.

'

The second~order expectation of g for model (13) follows immediately from (
--21 I - "
E 5 B var(y)(L - B )g"(Y) . (17)

2
As a function of B and 02, E is proportional to o /8 .

~
There is an interesting relationship between the maximum intrinsic curvature T

(Bates and watts, 1980) and the residual expectation (17). The maximum intrinsic

curvature can be written as

£1
= o/p (18)

where £k and sk are the acceleration and velocity vectors, respectively, and the maximum

is taken over all directions k = (ki) eRP . We have added the "hat" to E, as a

reminder that all derivatives involved in (18) are evaluated at the maximum likelihood
N
estimates. Evaluating I for model (13) we find that

5 - -
N X181 V(L - B )gniv)

I = max s /p = 18] var(v)I(} - B )g"(Y)Wp/s .

1Ty 2

-8~




From (17) and (19) it follows that
15175 = N2/ (20)
where E is E evaluated at the maximum likelihood estimates. Thus, for model (13) the

h maximum intrinsic curvature also describes the length of the vector of estimated residual

biases. This simple relation does not seem to hold for more complicated models.

4.2 Power Transformations of Explanatory Variables.

In this section we investigate the special case of model (13) that corresponds to
selecting a power transformation for a single explanatory variable x in linear
regression. Emphasis is placed on obtaining an understanding of the role that the values
of x have in determining the parameter and residual biases.

The problem of determining a power transformation for a single explanatory variable
! can be approached in the framework of model (13) with

g,(Y) = glx,,Y) = (x] = /Y . (21)
We investigate the role of the xi's by modifying (21) to allow for a systematic
alteration of these values. Specifically, for Y # 0 we use g(cxi,y) , ¢ >0, while
for Yy * 0 we find it more convenient to use g(x;,Y) +  The introduction of the known
constant ¢ is intended to allow for a comparison of a limjited number of designs and
should not be confused with rescaling of a common design.
when Y =0 and 9, = q(xz,v) we find ¥V = [2Z, clog X,/ Scz(-og xi)z/zl and

3 1 1 1
9'(!?.0) = ¢” (log xi)3/3 . Next, let b = (bi) and E denote the parameter #-d

residual biases, respectively, when 0 =8B = c¢c = 1 . Then a little algebra will verify

{ 9-
that
2.1 .

v b, = g¢"b, /Bc , 1= 1121""13"2 ’
P i i

' 2.1 2

b =g b___/Bc (22

¢ ‘ p-1 p-1 )

f and

b = 02b1/82c3
P P

where the biases b

-1 and bp ccrrespond to B and Y respectively. Further,
2.1
: E=0E /Bc . (23)
Lo ~9-
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The results in (22) and (23) suggest that when Y = 0 increasing the ratio max xi/min x4
will reduce all hiases, with ; benefitting from the greatest reduction. For example,
comparing the designs ("1} and [xi} + we see that the bias for ; from (xi} will be
8 times larger than the bias from {xf) .
When Y = 0 and 9 = ql(cxi.Y), E does not depend on c. For example the designs
[“i) and (2x1) will yield the same residual expections when y = 0 .

When Y # 0 we have been unable to find an informative expression for )b when using

q(cxt’Y)' However, when gz contains a column of 1's it is relatively straightforward to
deal with E since the column space of Yy is the same as the column space of
s Y Y

log xil , and except for the term chI(loq xi)Z/Y all addends

*
comprising g"(v) = [g'(cxi,v)) are contained in the column space of V¥V . Thus, when

v =1z, X%
constructing the projection in (17) we may use !. and g'(cxi,Y) = chI(log xi)Z/Y .
From this it follows that when 9 = qi(cxi,y)

E = o’E'/Bc" . (24)
Clearly, the effect of replacing (xi} with {cxi} depends strongly on Y and c. For

example, when Y > D the intrinsic curvature for the design {2x1} will be smaller than

that for (xi) , while when Yy < 0 the reverse is true.

S. ILLUSTRATIONS

In this section, we present several examples to illustrate selected results of the
previous sections.

To illustrate the nature of the residual bhias (9), we use model (13) with g(y)
given by (21), 2=1, n=20 and X; = 2.2(1)21,2 . Plots of 51 vergus x for
various values of Y are shown in Figure 1. For reference, we also give the maximum
intrinsic curvature FN for ¢ =8 = 1 and each value of Y . The values of PN and the
scales of the y-axes can be converted for other values of ¢ and 8 , and certain other
values for the explanatory variable by using (20), (23) and (24). The plots of [ are

clearly patterned, hut the display changes in both shape and magnitude as Yy varies. At

-10-
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N
Y =~ 1, I' and the magnitudes of the residual expectations are relatively large, while
at Y = 2 the residual expectations seem unim; tant.
Box and Hill (1974) describe a weighted analysis based on a linearized version of the

model
X - 1.6
£ =0 2%y = %y5/1.632) (259
8
R T PP LT

for i = 1,2,...,24. We use this model and the data provided by Box and Hill (1974) to

illustrate the effects of individual cases on the parameter bias. The ordinary least
squares estimate of 2? = (60,.-..93) is é? = (35.9, .071, .038, ,167) , and the large
sample estimates of the corresponding standard errors are 8,21, .179, .100 and .416,
respectively. The estimated bias vector, obtained by substituting estimates for

parameters in (3), is 2? = (1,997, .438, .245, 1.02) . Several of these biases are large

relative to the parameter estimates, even when the standard errors are taken into account.

An index plot of the 63 component of 2(1) - b is given as Figure 2. Clearly,

cages 20 and 22 play a substantial role in reducing the bias of 93 « Comparing Figure 2

with Figqure 3, an index plot of the hi , we see that the three cases (20, 22 and 24)

with the largest effects on the bias of 93 also have the three largest values of hl
{see equation 8). Removal of any of these three cases, particularly case 20, would cause

a substantial change in the agreement between the linear and quadratic approximations of

(25). This can be gseen, for example, by inspecting the elements of on + which are
substantial, or by comparing the curvatures with and without case 20: FN = ,y88 ,

.12 and Pr = 352,77 .

T
T = 140.11, (20)

Ti20) =

To illustrate the use of added variable plots associated with the regression in (3),
we use the Michaelis-Menton model f, = 61x/(02 + x) in combination with the data from
Bates and Watts (1980). However, for emphasis the first case (x = 2, y = .0615) |is

deleted in this example so that there are n = 11 cases. The estimates based on these
data are 9, = .08898 , 6, ~ 1,3668 and s = .00425 . The large sample standard errors

for 91 and 92 are .0165 and .4079, respectively. Figure 4 gives the added variable

plot for 61 . The first five points in this plot have two replicates, while the final

-11~-




point in the upper, right corner is replicated only once. The clear indication from this

figure is that the outlying point is having a substantial influence on the bias for 91 .

Further calculation confirms this indication: For the full (11 cases) data

' é? = (,0026, .074) while the bias without the outlying case (x = 2, y = .0527) and
evaluated at the estimates from the full data is QT = (.0432, .898) . Also, without the
outlying case 81 = ,0990 and 52 = 1.5693 , and the respective large sample standard
errors are ,0808 and 1.656. The substantial increase in the standard error of 8

partially accounts for the change in the bias of 92 when the outlying case is removed.

2

DISCUSSION
The development of diagnostic methods for linear regression is dependent on a

thorough study and characterization of the exact small sample behavior of a few

- —— - — eyt =

fundamental building blocks such as the ordinary residuals and related statistics. In
nonlinear regression, the small sample behavior of the corresponding building blocks is
generally intractable so that some degree of approximation is necessary. We have found
the various quadratic approximations in this paper to be useful aids for understanding
selected aspects of nonlinear regression problems. In principle, these approximations can
be extended to a higher accuracy, although the practical usefulness of such extensions is

unclear.

Recall that the residual expectations are strongly dependent on the intrinsic

Ve e -

array AN . The maximum intrinsic curvatures calculated by Bates and Watts (1980, Table
2), and Ratkowsky (1983) indicate that the residual expectations will generally be

i negligible. This may be a reflection of the quality of published studies rather than a
} ! reflection of the intrinsic linearity of statistical models since the illustrations in
i Section 5 show that there is no intrinsic reason why the intrinsic curvature cannot be

large.

Finally, the results of this paper are presented from a diagnostic view, but may also

be useful in other contexts. The updating analog of (8), for example, may be useful for

=12~
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searching the factor space to find a few additional runs that would substantially reduce

the bias.

APPENDIX
Equivalence of Bias Approximations
To show the equivalence of the five bias approximations discussed in Section 2, we
develop Cox and Snell's (1968) result for model (1). The approximations of Box (1971),
Clarke (1980), Hougaard (1981) and Amari (1982) will be ohtained at intermediate steps in

this development.

T, ,~1
Let m.., r,s= 1,...,p , denote the elements of M = (V'V) and let £, denote

the log likelihood corresponding to the i-th observation from model (1) so that the total
log likelihood is L = X l1 . Here and in the expressions that follow, summations

i
involving the index 1 are over the integers 1 to n, while summations involving any

other index are over the integers 1 to p. We assume that 02 is known when constructing

L.
Cox and Snell's (1968) bias approximation for 3‘. 8= 1,...,p , can now be written
as
a4 :
b, =3 ) ™o Fren ¥ 2y, pu! (A1)
rtu
= g3’ - 2
where K . = E3°1/30 30,30  and I, Z E(3L, /30,)(372, /30 26 ) .

The approximation error for (A.1) is o(n"). Evaluating X, ., and J, ru for model
’

(1), we find that
ru

- 1 r tu t
Xrtu — Lt enen
g i
and
A )- t_ru
M — f f .
t,ru o2 { i

Substituting these forms in (A.1) and simplifying yields

-13-
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2
.9y r_tu
hl 2 )‘ 2 mnmtutifi * (A.2)
i r,t,u

Apart from trivial changes in notation, this is Hougaard's (1981) bias approximation.

Next, since

g tu
Y om0 = trmn)
t,u
equation (A.2) can be rewritten as
2
0° ¢ ¢ r
b o= - ) m L trid W)
ir
or equivalently
2
o
2--}—-5} ytrid ) (A.3)

where xr is the i-th row of Y . Apart from notation, equation (A.3) i{s the bias

approximation derived by Box (1971).

To obtain Clarke's (1980) expression for the bias, we first express (A.3) in full

matrix form

p=uVa (A.4)

a

where ¢ is an n-vector with elements - 3 tr(M 21) « Next we express (A.4) in terms of
the QR-decomposition ¥ = UR , where R is a p x p nonsingular, upper triangular

T
matrix and J is n x p with orthogonal columns, YU = I:

p=LUTa (A.5) .
t
where L = 5'1 .« The i-th element of g can be represented as

2

a, = - ZarrT w

1 2 ~ o~

L =} a
y 4

where dij is the j-th diagonal element of
-4 T
-3 L 21 L - Finally, defining gj to be an n-vector with elements

dij' i=1,2,...n, we obtain

p=1)uta (A.6)
3

which is Clarke's (1980) form. 1In Clarke's notation, K = L and Bijj - E:Qj where 8,

is the i-th column of J . Further, in the notation of Bates and Watts (1980),

2jj /szp = g?gj 8o that, apart from differences in notation, Clarke's form is the same

-14-




as that given by Bates and Watts.
Amari (1982, Theorem 9) gives the bias of an efficient estimator from a curved

R Y

———— ..

-

S SR

w o

S AR N et

AP

exponential family. For the maximum likelihood estimator & . Amari's form immediately

reduces to

where rtur

have

For model (1) the second term of the mixture connection equals zero and it is not

is the mixture connection.

4 m

N'Q

1 mrsmtu rtur
r,t,u

From the definition of the mixture connection, we

3L 3t ar }

m
3% ag
Teur = Elsg 3o - 35 * ®l3g 35~ 30~
t u b4 t u r

(A.7)

difficult to verify that the firat term is X f:“ fi/az « Subgtituting this into (A.7)
i

yields (A.2) so that for model (1) Amari's bias approximation is equivalent to the four

forms discussed above.
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